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We consider the flow of a gas displaced by a piston which at some instant begins to ex- 
pand according to a power law with an exponent smaller than that corresponding to an 

intense explosion. We assume that the gas has received a finite energy prior to the begin- 
ning of motion of the piston. The energy of the gas in this case remains finite over an 
infinite time interval,so that all of the required functions are obtainable by linearization 

relative to the values occurring in the problem of an intense explosion. The solution is 
constructed by investigating the inverse problem in which a shock wave moves through 

a quiescent gas of constant density and at a pressure negligibly small as compared with 

the pressure behind it is specified. The piston expansion law is obtained by solving the 
resulting Cauchy problem. Special attention is given to the case of a cylindrical piston 
of constant radius, when the required solution contains logarithmic terms. 

The problem of motion of gas due to the expansion of a piston at a constant rate was 

solved by Sedov [l] and Taylor r2]. The more general case in which the velocity of the 
piston depends on time according to a power law was later investigated by Krasheninni- 
kova [3] and by Kochina and Mel’nikova [4]. In these studies the functions describing 
the perturbed flow fields depend on the self-similar variable only and are found by inte- 
grating a system of nonlinear ordinary differential equations. As may be seen from qua- 
litative investigation [3 and 41, the problem does not always have a solution if the piston 
motion is defined as R = ctn (where R is the coordinate and r is the time). In order for 
a solution to exist, the exponent n must satisfy the condition n > 2 / (v + 2), where the 
parameter v = i, 2, 3 for flows with plane, axial, and central symmetry, respectively. 
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Grigorian [S] proposed a simple explanation of this requirement : according to him, when 
n < 2 / (v + 2) , the gas immediately receives an infinite amount of energy at the ini- 
tial instant of piston motion. On the other hand, when n > 2 / (v + 2) , the amount of 

energy conveyed to the gas at t = 0 is equal to zero, and the energy becomes infinite 

only as r -* 00. If n = 2 / (V + 2), the finite energy is released over a negligibly short 
time, i. e. the problem is that of an intense explosion as investigated in detail by Sedov 

[6 and 71 and Taylor [S]. 
We shall assume that the piston moves according to a power law beginning at some 

instant t = T > 0, and that n < 2 / (v + 2). The energy E, conveyed to the gas in the 
initial phase of expansion (when t < T ) is assumed to be finite and not equal to zero. 

In our case its value remains finite even after infinite time following the initial instant 

of piston motion. Hence, all of the functions in the required solution can be obtained by 
linearization relative to the values which they assume in the intense explosion problem. 

Understandably, linearization is legitimate only if (Eo3 - ET) I E, -g 1, where E, denotes 
the total energy in the zone of perturbed gas flow as 1 - 30. 

1, We denote by r the distance from some point in the space to the plane, axis, or 
center of symmetry ; v is the velocity ; p is the density ; JI is the pressure ; x is the 

ratio of specific heats. The equations of one-dimensional unsteady motions of a cas can 
be written as [9] 

(1.f) 

The density p1 of an unperturbed medium will be assumed constant. As regards the 

intensity of the shock wave produced by the expanding piston, we assume that it is ex- 

tremely high. This enables us to neglect the pressure p1 in front of the discontinuity 
surface. This means that on passage through the shock front moving at the velocity c (r) 

we have [9] u, 2 
= -c, 

x+1 
x+1 Pz= X_* PI, Pl = &- Pd (l-2) 

where the subscript 2 refers to the gas in the compressed state. In constructing the solu- 
tion of system of differential equations (1.1) we must require fulfillment not only of 

Hugoniot conditions (1.2). but also of a boundary condition whereby the gas particles 

adjacent to the piston propagate with the same velocity as the latter. 
Instead of solving the above problem it is convenient to invert the procedure and to 

specify the coordinate r, (t) of the shock wave front for t > T as follows : 

r,(t) % @t)-+(i _&X) 

Here & is a small parameter, and the constant u is determined by the energy J!?, 
released in the initial phase of expansion of the gas for t < T and throughout the 
entire period of piston motion ; the exponent m > 0. We assume that the initial energy 
ET differs only slightly from the total energy of perturbed flow, i. e. that (Eo, - ET)/ 
/ &,, < 1. Essentially,.this assumption is already embodied in our law of propagation 
of the shock front. Converting to the new independent variables t and A= r (Uf)-v(““), 

we write the required functions as 
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u = oto[f(A) + et-2 f&)1, P = ~~~kf(J4 + et-%(U 
P = p20 ih (A.) + et -zh,(h)J (p*o(t) =y--:pl) m 

The quantitiies us,, (t) and ~,a (t) . F m ormulas (1.3) are given by conditions (1.2) if 
we assume that 

c- 2 .$-% 
v+2 

As regards the functions f (A), g (h) and h (A), h y t e are clearly the solution of the 

intense explosion problem [9]. In accordance with expansion (1.3) we can represent the 

equation of the shock wave front in the form 
5, = 1 -et-Z (1.4) 

where by standard procedure of the method of perturbations the boundary conditions for 

the required functions f,,, (A), g,,, (3L) and &,, (A) must refer to the point 5 = 1. 
Retaining only first-order terms in E in all the relations and neglecting the terms of 
higher orders of smallness, for L = i we obtain 

fm = df m--i+x, dr 
Sm=Jp h m=2(m-i)+ f (1.5) 

Linearization of equations of motion (1.1) can be effected in precisely similar fashion. 

This yields the homogeneous system 

9k +(r -+)~+(g+~++ (1.6) 

-+(.$++f-+m)g,=O 

h dfm 
dl +(f 

-+)!!h+ [!&+x”;” h] fm+ 

x f_-‘X+“,“+“‘] h,,,=() ;; ; ‘rc (v - I) 

which gives us the functions fm (A), g,,, (A) and h, (A) on the segment 0 ( L ( I. 
We can immediately point out several exact solutions of Cauchy problem (1.5) for 

Eqs. (1.6) on the basis of the group properties of the problem of an intense point explo- 

sion. As we know, its self-similarity is associated with the existence of a certain group 
of similarity transformations. The shift in the energy E, again yields the solution of the 
intense explosion problem with a somewhat altered value of this parameter. Moreover, 

the initial Euler equations and the Hugoniot conditions are invariant relative to the shift 
in the time t, and for v = i in the coordinate r as well. 

Bearing in mind the above remarks, we can write 

/,,=-f+Ag. gm=hg, h,=-2h++$ for m=O (i-7) 

j,=Gf+A$, g,,,=h-$, h,=vh+A$ for rn=F 
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dn 
6m=di,v h,, = g for m -_ v = i (f-7) 

(cont.) 
Altough the first of Formulas (1.7) is valid for all v, it is not explicitly dependent on 

this parameter. This procedure for finding particular solutions of the linearized system 
of equations which relies essentially on the invariance of the fundamental solution rela- 

tive to some transformation group was first used by Zel’dovich and Rarenblatt in the 
theory of unsteady gas filtration [lo]. 

2, The inverse problem under consideration enables us to associate each shock wave 
propagation law (1.4) with a quite specific law of piston motion. In order to investigate 

its character we must find the asymptotic behavior of the function fm (A) as A + 0. 
It is convenient to begin by transforming system of Eqs. (1.6) to a single third-order equa- 

tion for f+,, (h) and then to obtain the asymptotic expansions of all its linearly independ- 

ent particular solutions as 3. -f 0. In order to abbreviate our formulations we make use 

of the first integral of system (1.6). The existence of such an integral for the equations 
in variations taken relative to the self-similar solutions describing unsteady one-dimen- 

sional flows was proved in [ll and 121. Using the methodsdescribed there, we immedi- 

ately obtain 
ZV!, 

21-((x+i)x 

The constant c occurring in this expression can be determined by Cauchy data (1.5). 

Making use of Formula (2. l), we can transform system (1.6) to a second-order rather 
than a third-order equation for the formula fm (a); this equation is inhomogeneous. The 
asymptotic expansions of its solutions as h -+ 0 can be found readily, after which the 

asymptotic expansions of the functions g, (A) and h, (2;) are easy to obtain. As a 
result, for the first linearly independent solution of initial system (1.6) we have 

jm = a,b + . . . . gm = s*r'('-l) + . ..) It,, = ;xs + ,.. (2.2) 
We take the second of the required solutions in the form 

f, = P,P + . . . . gm = PthY(M)‘+-‘~ + .*** h, = ~S&“(r-x)/(*-1)+2 (2.3) 
+ . . . 

We write the third solution of system (1.6) as 

(2.4) 

The constants denoted by the same letters but different subscripts are related in certain 
ways. We shall not write o\lt these relationships because of their cumbersomness. 

Now let US find the pison coordinate R = b,,, (1). The gas particles adjacent to its 
surface must propagate with the same velocity as the piston. This condition yields 

dr n 

6 2 = ho V(A) + et- z f,, t~)lr=6r,~l, dt 

Substituting in the first of Formulas (2.2)-(2.4) which are valid for A -+ 0 and 
retaining only the principal terms in the resulting expression, we obtain the following 

equation for determining rm (iI’: 

drmv 2v r,’ 
tv 

dz x(v + 21 
7--=4E& 

VPS 
- _tfm-r)_1 

2 (X+f)(X+2) (IV+2 t 
vi2 (2.5) 
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The solution 

of the corresponding homogeneous equation yields the trajectories of the gas particles in 

the neighborhood of the plane, axis, or center of symmetry [9]. By suitable choice of the 
piston coordinate at t = T we can always ensure that the constant A in Formula (2.6) 

is equal to zero, It is clear from this that the solution of the inhomogeneous equation 
(2.5) is the required law of piston expansion. 

For simplicity we set 1 t 1 = (Iv and choose the sign of e. in such a way that the func- 

tions ?m (2) and R (f) are positive. For m $= v (x - *) f X we have 
2 

-I 

2x*1 

I 

1 nlu-m) -- 
T, = a VT2 

(x(i) - mx -v) ” t +fr+2’ 12.7) 

The above relation shows that the law of piston motion is determined only by integral 
(2.3) of system (1.6) and does not depend on the constants atand ys in its two other par- 
ticular solutions. As can be shown by numerical integration of Eqs, (1.6). the constant 

pt is positive for m < v. This condition must be fulfilled in order for the exponent of 
t in Formula (2.7) to be larger than zero. Hence, for m < V (X - 1) /% the para- 

meter e > 0. Under these conditions as t -+ oo the piston moves more rapidly than 
the particles in an intense explosion. As regards the coordinate of the wave front, its 

values with increasing time tend to the corresponding values in the intense explosion 
problem, but always remain smaller than the latter. 

For m > v (x - 4) f X the sign of E is negative. The velocity of the piston is in 
this case smaller than the velocity of the particles brought into motion by a violent ex- 
plosion, and the shock front coordinate reaches its top limit. 

If m = v (x - f)/ x we must replace Formula (2.7) by 

Here we have retained the term corresponding to the ihomogeneous solution. For e =0 

the law of piston motion is determined by the self-similar integral of the violent explo- 

sion problem. For e # 0 the difference between the piston velocity and the velocity 

of propagation of gas particles propelled by an explosion wave turns out to be logatith- 
mic. 

Strictly speaking, the adopted form (1.3) of representing the solution of the problem 
under consideration is not valid for small values of the coordinate r. As we infer from 

expansions (2.2)-(2.4) and Formula (2.7). in the neighborhood of the piston surface both 
of the terms appearing in square brackets in the first of two relations of (1.3) are of the 
same order. In order to eliminate this.difficulty and to obtain the solution valid within 

the approximation under consideration, we can make use of the familiar method of com- 
bining the outer and inner asymptotic expansions. The essence of this method is descri- 
bed in detail in Van Dyke’s book [13], Omitting the appropriate expressions, we merely 
note that the application of the method of combining asymptotic expansions confirms 
the results of the linear theory, even though these were obtained without allowance for 
the special character of the solution for the small values of the coordinate 1. In parti- 
cular, laws of piston motion (2.7) and (2.8) remain valid. 

To illustrate, let us cite some relations obtained by numerical integration of system 
(1.6) with allowance for Cauchy data (1.5). In our computations we assumed the ratio 
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of specific heats to be 1.4. As we see from Fig, 1, the function j,,, (A) is positive. For 
v = f its values are finite for all A, and for v = 2.3 it tends fairly rapidly to infinity 
as 1 -, 0. Only in the exceptional cases realized for m = 0 and m = (v + 2) f 2 do we 

Fig. 1 

Fig. 2 

have fm (0) = 6. For the same v the values of the 

function gm(k) are very close to those shown in 
Fig. 2, although the parameter m is arbitrary. The 
large values of rrn {A) for h close to unity and 
their rapid decrease as the independent variables 

decreases mean that in perturbed motion the gas 

is concentrated near the shock wave front. The 
curves in Fig. 3 represent the pressure variation. 
For m=v= 1 the’solution of this problem results 
from the last formulas of (1.7). from which we 

find, for example, that 0, = (X -& if I 2%. 

3. The coefficient pt in expansion (2.3) vanishes 
when m = (v + 2) / 2. This value of the para- 
meter is proper. since system (1. E) has a nonzero 

Fig. 3 

solution even if as our boundary condition we require that the gas particle velocity vanish 
on approaching the plane, axis, or center of symmetry. As already noted, for m = (v 4 
+ 2) / 2 the solution of system (1.6) can be expressed with the aid of the second group 
of Formulas (1.7). This representation is related to the invariance of the initial Euler 
equations and the Hugoniot conditions relative to the time shift. It is clear that expan- 
sion (1.3) cannot describe the piston motion for m = (V + 2) / 2. 

Let us invert the procedure as above and specify the coordinate of the shock wave front. 
Instead of Formula (1.4) we write 

5 + &b In t) (3-f) 

The constant b appearing in this expression is arbitrary. In accordance with (3. I), 
we can write the expansion of the required solution in the form 
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u = urn 
i 
f(k) -I- et-l 

p = pso (g @) + erl [ &km (9 ln t + gm1 (Xi]} (3.2) 

p =c ~20 
1 
h (A) + et-’ 

C 
$$-k (5) In t f &I (&,I) 

The initial values of all the functions to be determined are obtainable from conditions 

(1.2) at the shock front. Using the method of variations, we can easily prove that for 

h = 1 the functions f,n (I), g,, (h) and hh, (A) satisfy Eqs. (I, 5). For the initial values 

fmr (A)* g,t (a) and h,, (A) of these functions we have the relations 

fmdf) = df 
rn-i-b+x, &Idi) -9 

ft,l(i)=2(n+i-b)+-g (3.3) 

Substitution of Formulas (3.2) into Euler equations (1.1) shows that not only the initial 

data, but also the system of ordinary differential equations which determines the functions 

fn (A)* gm (A) and h, (A) on the segment 0 < Iv < 1 remain constant. Thus, we 
can represent them, as before, with the aid of the second formulas of (1.7). As regards 
the functions fmr (A), gmr (h) and hmr (A), they satisfy a system of inhomogeneous 
differential equations whose left sides coincide with (1.6) and whose right sides are the 

quantities 

-+bg(;f + x-$). -?_!++ 
. 

- +b vfr + IL%) (3.6) 

Investigation of the asymptotic behavior of the particular solutions of the above inho- 

mogeneous equations proves the possibility of using them to determine the expansion of 

the piston. The law of motion of the latter corresponds to (2.7). In other words, 

rm- +2,/*(r+t) 
(3.5) 

To obtain the values of the required functions by numerical integration of the equa- 
tions it is convenient to write them in the form of sums, 

f nit = fm + bfm*s gm, = gm + kn*t hmk = km + tint* (3.6) 

Here the quantities jm* (?+I, g,,,* fh) and h ,,,* (A) satisfy system (1.6) with right 
sides (3.4) in which the arbitrary constant b = i.The initial data for the new functions 
can be obtained by substituting Eqs. (3.5) into (3.3) and turn out to be 

fin*(i)=--lr gm* (1) = 0, h,* (1) = -2 
The results of integration for m = 3 = 2 appear in Fig. 4. 

For (V + 2) ! 2 < m < V the solution of the problem of a piston expanding in a 
quiescent gas of constant density at negligibly low pressure should be taken as a sum of 

three terms. The first of these terms is associated with the self-similar solution [d] 
describing the propagation of blast waves ; the second is associated with solution (I, 7) 
for m = (V + 2 ) / 2. Only the third term is directly related to the motion of the 
piston according to law (2.7). If we assume that the exponent of t in this formula is 
larger than zero, then a solution in the form of a three-term sum must be used only for 
describing flows with central symmetry. 

4. Let us consider the problem of the energy in the zone of perturbed flow confined 
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between the shock wave and piston. At some instant t we have 

Fig. 4 

r,(‘) 

E = e” SC $+ -&+-ldr 

R (0 

ev=2(v--i)Z+(V-2)(V-3) (4.1) 

Substitution of relations (1.3), (1.4) and (2.7) 

into Eq. (4~l~ields %+, 

(v-+2)*&s-U 
(J + E&t- % 

(4.2) 
Here the constant J is determined by the solu- 

tion of the intense explosion problem [9] and is 
proportional to the asymptotic value R!?, of the 
gas energy as t --P 01; the value ofJ, for m # 

=f=vN-- i) / x is given by Formula 

For m =v(x- 1) 1 x the expression for J,,, should be replaced in accordance with 

(2.8) by 

Computations show that the prpduct ei, is negative for all m < V. For m = v the 

exponent of 1 in the law of piston motion (2.7) vanishes. In this case the piston reaches 
its maximum dimensions in a finite time t < T and then stops. For t > T it clearly does 

no work. In full agreement with this fact, the quantity J,vanishes for m = v , It is easy 
to show that an expression of the form (4.2) for computing the total gas energy is valid 

if m = (v f 2) i 2; the term proportional to I,, t-s”rf(‘~21 uf vanishes, since jrnr = 0. 

In conclusion we note that by virtue of the familiar analogy [14 and 1.51 between hyper- 

sonic flow past slender bodies and unsteady flows in a space with one less dimension, the 
solutions obtained above can be used to compute the parameters of the gas between the 
head shock wave and the surface of a body. The condition which makes this application 

legitimate clearly reduces to the smallness of the drag at the side of the surface as com- 

pared with the drag at the blunt nose. The effect which entails the appearance of a high- 
entropy layer must be considered separately. The effect of the bluntness of the nose of 
the body on hypersonic gas flow past it was investigated in this formulation by Chernyi 
[ZS- 18],Cheng and Pallone [19]. and Lees and Kubota [‘LO]. In accordance with the above 
analogy, Formulas (3.2) also describe flow past a blunt-nosed circular cylinder of finite 

thickness pointing into the oncoming stream, in such a way that its generatirices are paral- 

lel to the unperturbed velocity vector. This statement follows directly from relation 

(3.5) if we set v = 2. 
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